Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.058
Filtrar
1.
Int J Cancer ; 154(11): 1987-1998, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38319157

RESUMO

Approximately 5% of colorectal cancers (CRCs) have a gain-of-function mutation in the GNAS gene, which leads to the activation of cAMP-dependent signaling pathways and associates with poor prognosis. We investigated the effect of an activating GNAS mutation in CRC cell lines on gene expression and cell proliferation in vitro, and tumor growth in vivo. GNAS-mutated (GNASmt) HCT116 cells showed stimulated synthesis of cAMP as compared to parental (Par) cells. The most upregulated gene in the GNASmt cells was cAMP-hydrolyzing phosphodiesterase 4D (PDE4D) as detected by RNA sequencing. To further validate our finding, we analyzed PDE4D expression in a set of human CRC tumors (n = 35) and demonstrated overexpression in GNAS mutant CRC tumors as compared to GNAS wild-type tumors. The GNASmt HCT116 cells proliferated more slowly than the Par cells. PDE4 inhibitor Ro 20-1724 and PDE4D subtype selective inhibitor GEBR-7b further suppressed the proliferation of GNASmt cells without an effect on Par cells. The growth inhibitory effect of these inhibitors was also seen in the intrinsically GNAS-mutated SK-CO-1 CRC cell line having high levels of cAMP synthesis and PDE4D expression. In vivo, GNASmt HCT116 cells formed smaller tumors than the Par cells in nude mice. In conclusion, our findings demonstrate that GNAS mutation results in the growth suppression of CRC cells. Moreover, the GNAS mutation-induced overexpression of PDE4D provides a potential avenue to impede the proliferation of CRC cells through the use of PDE4 inhibitors.


Assuntos
Cromograninas , Neoplasias Colorretais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Animais , Humanos , Camundongos , Cromograninas/genética , Cromograninas/metabolismo , Neoplasias Colorretais/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células HCT116 , Camundongos Nus , Mutação , Inibidores da Fosfodiesterase 4/farmacologia
2.
J Mol Endocrinol ; 72(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37965945

RESUMO

Several human disorders are caused by genetic or epigenetic changes involving the GNAS locus on chromosome 20q13.3 that encodes the alpha-subunit of the stimulatory G protein (Gsα) and several splice variants thereof. Thus, pseudohypoparathyroidism type Ia (PHP1A) is caused by heterozygous inactivating mutations involving the maternal GNAS exons 1-13 resulting in characteristic abnormalities referred to as Albright's hereditary osteodystrophy (AHO) that are associated with resistance to several agonist ligands, particularly to parathyroid hormone (PTH), thereby leading to hypocalcemia and hyperphosphatemia. GNAS mutations involving the paternal Gsα exons also cause most of these AHO features, but without evidence for hormonal resistance, hence the term pseudopseudohypoparathyroidism (PPHP). Autosomal dominant pseudohypoparathyroidism type Ib (PHP1B) due to maternal GNAS or STX16 mutations (deletions, duplications, insertions, and inversions) is associated with epigenetic changes at one or several differentially methylated regions (DMRs) within GNAS. Unlike the inactivating Gsα mutations that cause PHP1A and PPHP, hormonal resistance is caused in all PHP1B variants by impaired Gsα expression due to loss of methylation at GNAS exon A/B, which can be associated in some familial cases with epigenetic changes at the other maternal GNAS DMRs. The genetic defect(s) responsible for sporadic PHP1B, the most frequent variant of this disorder, remain(s) unknown for the majority of patients. However, characteristic epigenetic GNAS changes can be readily detected that include a gain of methylation at the neuroendocrine secretory protein (NESP) DMR. Multiple genetic or epigenetic GNAS abnormalities can thus impair Gsα function or expression, consequently leading to inadequate cAMP-dependent signaling events downstream of various Gsα-coupled receptors.


Assuntos
Cromograninas , Pseudo-Hipoparatireoidismo , Humanos , Cromograninas/genética , Cromograninas/metabolismo , Pseudo-Hipoparatireoidismo/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Epigênese Genética , Metilação de DNA
3.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958575

RESUMO

Fibrous dysplasia (FD) is a rare, non-hereditary skeletal disorder characterized by its chronic course of non-neoplastic fibrous tissue buildup in place of healthy bone. A myriad of factors have been associated with its onset and progression. Perturbation of cell-cell signaling networks and response outputs leading to disrupted building blocks, incoherent multi-level organization, and loss of rigid structural motifs in mineralized tissues are factors that have been identified to participate in FD induction. In more recent years, novel insights into the unique biology of FD are transforming our understandings of its pathology, natural discourse of the disease, and treatment prospects. Herein, we built upon existing knowledge with recent findings to review clinical, etiologic, and histological features of FD and discussed known and potential mechanisms underlying FD manifestations. Subsequently, we ended on a note of optimism by highlighting emerging therapeutic approaches aimed at either halting or ameliorating disease progression.


Assuntos
Displasia Fibrosa Óssea , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Humanos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Displasia Fibrosa Óssea/terapia , Displasia Fibrosa Óssea/patologia , Osso e Ossos/metabolismo , Comunicação Celular
4.
J Int Med Res ; 51(11): 3000605231215202, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38017366

RESUMO

We report a 15-year-old Chinese girl who presented with intermittent seizure episodes and had been misdiagnosed as having idiopathic epilepsy 5 years previously. Laboratory testing revealed hypocalcemia, hyperphosphatemia, and a high parathyroid hormone (PTH) concentration. She was subsequently shown to have pseudohypoparathyroidism type Ib (PHPIb) based on the results of methylation analysis of the GNAS gene, which showed a loss of methylation of the differentially methylated regions (DMR) of GNAS-AS1, GNAS-XL, and GNAS-A/B; and a gain of methylation of the DMR of the GNAS-NESP55 region. We adjusted the patient's medication by prescribing calcium and calcitriol supplements, and gradually reduced the doses of antiepileptic drugs, until they had been completely discontinued. As a result, the patient did not experience any further seizures or epileptiform symptoms; and had normal plasma calcium, phosphorus, and 25-hydroxyvitamin D concentrations and 24-hour urinary calcium excretion. In addition, her PTH concentration gradually normalized over 12 months, and no urinary stones were found on ultrasonographic examination. In conclusion, the clinical presentation of PHP is complex, and the condition is often misdiagnosed. The diagnosis and follow-up of the present patient have provide valuable insights that should contribute to informed clinical decision-making and the implementation of appropriate treatment strategies.


Assuntos
Epilepsia , Pseudo-Hipoparatireoidismo , Humanos , Feminino , Adolescente , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Metilação de DNA , Cálcio , Seguimentos , Cromograninas/genética , Pseudo-Hipoparatireoidismo/diagnóstico , Pseudo-Hipoparatireoidismo/genética , Hormônio Paratireóideo , Epilepsia/genética , Erros de Diagnóstico
5.
Nature ; 621(7979): 635-641, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524305

RESUMO

Class B G-protein-coupled receptors (GPCRs), including glucagon-like peptide 1 receptor (GLP1R) and parathyroid hormone 1 receptor (PTH1R), are important drug targets1-5. Injectable peptide drugs targeting these receptors have been developed, but orally available small-molecule drugs remain under development6,7. Here we report the high-resolution structure of human PTH1R in complex with the stimulatory G protein (Gs) and a small-molecule agonist, PCO371, which reveals an unexpected binding mode of PCO371 at the cytoplasmic interface of PTH1R with Gs. The PCO371-binding site is totally different from all binding sites previously reported for small molecules or peptide ligands in GPCRs. The residues that make up the PCO371-binding pocket are conserved in class B GPCRs, and a single alteration in PTH2R and two residue alterations in GLP1R convert these receptors to respond to PCO371. Functional assays reveal that PCO371 is a G-protein-biased agonist that is defective in promoting PTH1R-mediated arrestin signalling. Together, these results uncover a distinct binding site for designing small-molecule agonists for PTH1R and possibly other members of the class B GPCRs and define a receptor conformation that is specific only for G-protein activation but not arrestin signalling. These insights should facilitate the design of distinct types of class B GPCR small-molecule agonist for various therapeutic indications.


Assuntos
Imidazolidinas , Receptores Acoplados a Proteínas G , Compostos de Espiro , Humanos , Arrestina/metabolismo , Sítios de Ligação , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Imidazolidinas/farmacologia , Ligantes , Peptídeos/farmacologia , Conformação Proteica , Receptor Tipo 1 de Hormônio Paratireóideo/agonistas , Receptor Tipo 1 de Hormônio Paratireóideo/classificação , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos de Espiro/farmacologia , Desenho de Fármacos
6.
Proc Natl Acad Sci U S A ; 120(30): e2216329120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37478163

RESUMO

To accomplish concerted physiological reactions, nature has diversified functions of a single hormone at at least two primary levels: 1) Different receptors recognize the same hormone, and 2) different cellular effectors couple to the same hormone-receptor pair [R.P. Xiao, Sci STKE 2001, re15 (2001); L. Hein, J. D. Altman, B.K. Kobilka, Nature 402, 181-184 (1999); Y. Daaka, L. M. Luttrell, R. J. Lefkowitz, Nature 390, 88-91 (1997)]. Not only these questions lie in the heart of hormone actions and receptor signaling but also dissecting mechanisms underlying these questions could offer therapeutic routes for refractory diseases, such as kidney injury (KI) or X-linked nephrogenic diabetes insipidus (NDI). Here, we identified that Gs-biased signaling, but not Gi activation downstream of EP4, showed beneficial effects for both KI and NDI treatments. Notably, by solving Cryo-electron microscope (cryo-EM) structures of EP3-Gi, EP4-Gs, and EP4-Gi in complex with endogenous prostaglandin E2 (PGE2)or two synthetic agonists and comparing with PGE2-EP2-Gs structures, we found that unique primary sequences of prostaglandin E2 receptor (EP) receptors and distinct conformational states of the EP4 ligand pocket govern the Gs/Gi transducer coupling selectivity through different structural propagation paths, especially via TM6 and TM7, to generate selective cytoplasmic structural features. In particular, the orientation of the PGE2 ω-chain and two distinct pockets encompassing agonist L902688 of EP4 were differentiated by their Gs/Gi coupling ability. Further, we identified common and distinct features of cytoplasmic side of EP receptors for Gs/Gi coupling and provide a structural basis for selective and biased agonist design of EP4 with therapeutic potential.


Assuntos
Dinoprostona , Transdução de Sinais , Dinoprostona/metabolismo , Transdução de Sinais/fisiologia , Receptores de Prostaglandina/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Hormônios , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo
7.
Nature ; 618(7967): 1085-1093, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286611

RESUMO

G protein-coupled receptors (GPCRs) generally accommodate specific ligands in the orthosteric-binding pockets. Ligand binding triggers a receptor allosteric conformational change that leads to the activation of intracellular transducers, G proteins and ß-arrestins. Because these signals often induce adverse effects, the selective activation mechanism for each transducer must be elucidated. Thus, many orthosteric-biased agonists have been developed, and intracellular-biased agonists have recently attracted broad interest. These agonists bind within the receptor intracellular cavity and preferentially tune the specific signalling pathway over other signalling pathways, without allosteric rearrangement of the receptor from the extracellular side1-3. However, only antagonist-bound structures are currently available1,4-6, and there is no evidence to support that biased agonist binding occurs within the intracellular cavity. This limits the comprehension of intracellular-biased agonism and potential drug development. Here we report the cryogenic electron microscopy structure of a complex of Gs and the human parathyroid hormone type 1 receptor (PTH1R) bound to a PTH1R agonist, PCO371. PCO371 binds within an intracellular pocket of PTH1R and directly interacts with Gs. The PCO371-binding mode rearranges the intracellular region towards the active conformation without extracellularly induced allosteric signal propagation. PCO371 stabilizes the significantly outward-bent conformation of transmembrane helix 6, which facilitates binding to G proteins rather than ß-arrestins. Furthermore, PCO371 binds within the highly conserved intracellular pocket, activating 7 out of the 15 class B1 GPCRs. Our study identifies a new and conserved intracellular agonist-binding pocket and provides evidence of a biased signalling mechanism that targets the receptor-transducer interface.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP , Imidazolidinas , Receptores Acoplados a Proteínas G , Humanos , Regulação Alostérica , beta-Arrestinas/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Desenvolvimento de Medicamentos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Imidazolidinas/química , Imidazolidinas/farmacologia , Ligantes , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/ultraestrutura , Transdução de Sinais
8.
Nat Chem ; 15(8): 1127-1137, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37349378

RESUMO

There is considerable uncertainty about the mechanism by which the ß2-adrenergic receptor (ß2AR) is activated. Here we use molecular metadynamics computations to predict the mechanism by which an agonist induces the activation of the ß2AR and its cognate Gs protein. We found that binding agonist alone to the inactive ß2AR does not break the ionic lock and hence does not drive the ß2AR towards the activated conformation. However, we found that attaching the inactive Gs protein to the agonist-bound inactive ß2AR (containing the ionic lock) leads to partial insertion of Gαs-α5 into the core of ß2AR, which breaks the ionic lock, leading to activation of the Gs protein coupled to ß2AR. Upon activation, the Gαs protein undergoes a remarkable opening of the GDP binding pocket, making the GDP available for exchange or release. Concomitantly, Gαs-α5 undergoes a remarkable expansion in the ß2AR cytoplasmic region after the ionic lock is broken, inducing TM6 to displace outward by ~5 Å from TM3.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP , Transdução de Sinais , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Ligação Proteica
9.
Nature ; 618(7963): 193-200, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225986

RESUMO

Odorants are detected as smell in the nasal epithelium of mammals by two G-protein-coupled receptor families, the odorant receptors and the trace amine-associated receptors1,2 (TAARs). TAARs emerged following the divergence of jawed and jawless fish, and comprise a large monophyletic family of receptors that recognize volatile amine odorants to elicit both intraspecific and interspecific innate behaviours such as attraction and aversion3-5. Here we report cryo-electron microscopy structures of mouse TAAR9 (mTAAR9) and mTAAR9-Gs or mTAAR9-Golf trimers in complex with ß-phenylethylamine, N,N-dimethylcyclohexylamine or spermidine. The mTAAR9 structures contain a deep and tight ligand-binding pocket decorated with a conserved D3.32W6.48Y7.43 motif, which is essential for amine odorant recognition. In the mTAAR9 structure, a unique disulfide bond connecting the N terminus to ECL2 is required for agonist-induced receptor activation. We identify key structural motifs of TAAR family members for detecting monoamines and polyamines and the shared sequence of different TAAR members that are responsible for recognition of the same odour chemical. We elucidate the molecular basis of mTAAR9 coupling to Gs and Golf by structural characterization and mutational analysis. Collectively, our results provide a structural basis for odorant detection, receptor activation and Golf coupling of an amine olfactory receptor.


Assuntos
Aminas Biogênicas , Odorantes , Percepção Olfatória , Poliaminas , Receptores Odorantes , Animais , Camundongos , Aminas Biogênicas/análise , Aminas Biogênicas/química , Aminas Biogênicas/metabolismo , Microscopia Crioeletrônica , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Odorantes/análise , Percepção Olfatória/fisiologia , Poliaminas/análise , Poliaminas/química , Poliaminas/metabolismo , Receptores de Amina Biogênica/química , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo , Receptores de Amina Biogênica/ultraestrutura , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/ultraestrutura , Olfato/fisiologia , Espermidina/análise , Espermidina/química , Espermidina/metabolismo
10.
J Clin Endocrinol Metab ; 108(11): 2961-2969, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37098127

RESUMO

BACKGROUND: Pseudohypoparathyroidism (PHP) and related disorders newly referred to as inactivating PTH/PTHrP signaling disorders (iPPSD) are rare endocrine diseases. Many clinical features including obesity, neurocognitive impairment, brachydactyly, short stature, parathyroid hormone (PTH) resistance, and resistance to other hormones such as thyroid-stimulating hormone (TSH) have been well described, yet they refer mainly to the full development of the disease during late childhood and adulthood. OBJECTIVE: A significant delay in diagnosis has been reported; therefore, our objective is to increase awareness on neonatal and early infancy presentation of the diseases. To do so, we analyzed a large cohort of iPPSD/PHP patients. METHODS: We included 136 patients diagnosed with iPPSD/PHP. We retrospectively collected data on birth and investigated the rate of neonatal complications occurring in each iPPSD/PHP category within the first month of life. RESULTS: Overall 36% of patients presented at least one neonatal complication, far more than the general population; when considering only the patients with iPPSD2/PHP1A, it reached 47% of the patients. Neonatal hypoglycemia and transient respiratory distress appeared significantly frequent in this latter group, ie, 10.5% and 18.4%, respectively. The presence of neonatal features was associated with earlier resistance to TSH (P < 0.001) and with the development of neurocognitive impairment (P = 0.02) or constipation (P = 0.04) later in life. CONCLUSION: Our findings suggest that iPPSD/PHP and especially iPPSD2/PHP1A newborns require specific care at birth because of an increased risk of neonatal complications. These complications may predict a more severe course of the disease; however, they are unspecific which likely explains the diagnostic delay.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo , Pseudo-Hipoparatireoidismo , Humanos , Lactente , Recém-Nascido , Cromograninas , Diagnóstico Tardio , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Pseudo-Hipoparatireoidismo/complicações , Pseudo-Hipoparatireoidismo/diagnóstico , Doenças Raras , Estudos Retrospectivos , Tireotropina
11.
Curr Osteoporos Rep ; 21(3): 311-321, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37014531

RESUMO

PURPOSE OF REVIEW: Pseudohypoparathyroidism (PHP) is a disorder caused by mutations and/or epigenetic changes at the complex GNAS locus. It is characterized by hypocalcemia, hyperphosphatemia, and an elevated parathyroid hormone concentration secondary to the resistance of target tissues to the biological actions of parathyroid hormone. PHP is divided into several subtypes with different yet overlapping phenotypes. Research on the bone status in patients with PHP is sparse and has yielded inconsistent results. This review was performed to summarize the current knowledge on the bone phenotypes and possible mechanisms of PHP. RECENT FINDINGS: Patients with PHP exhibit highly variable bone phenotypes and increased concentrations of bone turnover markers. Long-standing elevation of the parathyroid hormone concentration may lead to hyperparathyroid bone diseases, including rickets and osteitis fibrosa. Compared with normal controls, patients with PHP may exhibit similar, increased, or decreased bone mineral density. Higher bone mineral density has been found in patients with PHP type 1A than in normal controls, whereas decreased bone mass, osteosclerosis, and osteitis fibrosa cystica have been reported in patients with PHP type 1B, indicating more variable bone phenotypes in PHP type 1B. Bone tissues show partial sensitivity to parathyroid hormone in patients with PHP, leading to heterogeneous reactions to parathyroid hormone in different individuals and even in different regions of bone tissues in the same individual. Regions rich in cancellous bone are more sensitive and show more obvious improvement after therapy. Active vitamin D and calcium can significantly improve abnormal bone metabolism in patients with PHP.


Assuntos
Doenças Ósseas , Pseudo-Hipoparatireoidismo , Humanos , Osso e Ossos/metabolismo , Pseudo-Hipoparatireoidismo/genética , Pseudo-Hipoparatireoidismo/complicações , Pseudo-Hipoparatireoidismo/metabolismo , Hormônio Paratireóideo/metabolismo , Doenças Ósseas/complicações , Fenótipo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Cromograninas/genética , Cromograninas/metabolismo
12.
Nat Struct Mol Biol ; 30(4): 502-511, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36997760

RESUMO

Heterotrimeric G proteins serve as membrane-associated signaling hubs, in concert with their cognate G-protein-coupled receptors. Fluorine nuclear magnetic resonance spectroscopy was employed to monitor the conformational equilibria of the human stimulatory G-protein α subunit (Gsα) alone, in the intact Gsαß1γ2 heterotrimer or in complex with membrane-embedded human adenosine A2A receptor (A2AR). The results reveal a concerted equilibrium that is strongly affected by nucleotide and interactions with the ßγ subunit, the lipid bilayer and A2AR. The α1 helix of Gsα exhibits significant intermediate timescale dynamics. The α4ß6 loop and α5 helix undergo membrane/receptor interactions and order-disorder transitions respectively, associated with G-protein activation. The αN helix adopts a key functional state that serves as an allosteric conduit between the ßγ subunit and receptor, while a significant fraction of the ensemble remains tethered to the membrane and receptor upon activation.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP , Humanos , Modelos Moleculares , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Conformação Proteica , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Ligação Proteica
13.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835474

RESUMO

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are among the most important cellular signaling components, especially G protein-coupled receptors (GPCRs). G proteins comprise three subunits, Gα, Gß, and Gγ. Gα is the key subunit, and its structural state regulates the active status of G proteins. Interaction of guanosine diphosphate (GDP) or guanosine triphosphate (GTP) with Gα switches G protein into basal or active states, respectively. Genetic alteration in Gα could be responsible for the development of various diseases due to its critical role in cell signaling. Specifically, loss-of-function mutations of Gαs are associated with parathyroid hormone-resistant syndrome such as inactivating parathyroid hormone/parathyroid hormone-related peptide (PTH/PTHrP) signaling disorders (iPPSDs), whereas gain-of-function mutations of Gαs are associated with McCune-Albright syndrome and tumor development. In the present study, we analyzed the structural and functional implications of natural variants of the Gαs subtype observed in iPPSDs. Although a few tested natural variants did not alter the structure and function of Gαs, others induced drastic conformational changes in Gαs, resulting in improper folding and aggregation of the proteins. Other natural variants induced only mild conformational changes but altered the GDP/GTP exchange kinetics. Therefore, the results shed light on the relationship between natural variants of Gα and iPPSDs.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hormônio Paratireóideo/metabolismo , Transdução de Sinais , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Pseudo-Hipoparatireoidismo/genética , Conformação Proteica
14.
J Clin Invest ; 133(8)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853809

RESUMO

Genetic defects of GNAS, the imprinted gene encoding the stimulatory G protein α-subunit, are responsible for multiple diseases. Abnormal GNAS imprinting causes pseudohypoparathyroidism type 1B (PHP1B), a prototype of mammalian end-organ hormone resistance. Hypomethylation at the maternally methylated GNAS A/B region is the only shared defect in patients with PHP1B. In autosomal dominant (AD) PHP1B kindreds, A/B hypomethylation is associated with maternal microdeletions at either the GNAS NESP55 differentially methylated region or the STX16 gene located approximately 170 kb upstream. Functional evidence is meager regarding the causality of these microdeletions. Moreover, the mechanisms linking A/B methylation and the putative imprinting control regions (ICRs) NESP-ICR and STX16-ICR remain unknown. Here, we generated a human embryonic stem cell model of AD-PHP1B by introducing ICR deletions using CRISPR/Cas9. With this model, we showed that the NESP-ICR is required for methylation and transcriptional silencing of A/B on the maternal allele. We also found that the SXT16-ICR is a long-range enhancer of NESP55 transcription, which originates from the maternal NESP-ICR. Furthermore, we demonstrated that the STX16-ICR is an embryonic stage-specific enhancer enabled by the direct binding of pluripotency factors. Our findings uncover an essential GNAS imprinting control mechanism and advance the molecular understanding of PHP1B pathogenesis.


Assuntos
Cromograninas , Pseudo-Hipoparatireoidismo , Animais , Humanos , Darbepoetina alfa/genética , Darbepoetina alfa/metabolismo , Cromograninas/genética , Cromograninas/metabolismo , Pseudo-Hipoparatireoidismo/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Metilação de DNA , Impressão Genômica , Mamíferos/metabolismo
15.
Mol Cell Biochem ; 478(4): 707-719, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36036334

RESUMO

Keloid is a common dermis tumor, occurring repeatedly, affecting the quality of patients' life. Long non-coding RNAs (lncRNAs) have crucial regulatory capacities in skin scarring formation and subsequent scar carcinogenesis. The intention of this study was to investigate the mechanism and function of GNAS antisense-1 (GNAS-AS1) in keloids. Clinical samples were collected to evaluate the expression of GNAS-AS1, RUNX2, and miR-188-5p by qRT-PCR. The proliferation, migration, and invasion of HKF cells were detected by CCK-8, wound healing, and Transwell assays. The expression levels of mRNA and protein were examined through qRT-PCR and Western blot assay. Luciferase reporter assay was used to identify the binding relationship among GNAS-AS1, miR-188-5p, and Runt-related transcription factor 2 (RUNX2). GNAS-AS1 and RUNX2 expressions were remarkably enhanced, and miR-188-5p expression was decreased in keloid clinical tissues and HKF cells. GNAS-AS1 overexpression promoted cells proliferation, migration, and invasion, while GNAS-AS1 knockdown had the opposite trend. Furthermore, overexpression of GNAS-AS1 reversed the inhibitory effect of 5-FU on cell proliferation, migration, and invasion. MiR-188-5p inhibition or RUNX2 overexpression could enhance the proliferation, migration, and invasion of HKF cells. GNAS-AS1 targeted miR-188-5p to regulate RUNX2 expression. In addition, the inhibition effects of GNAS-AS1 knockdown on HKF cells could be reversed by inhibition of miR-188-5p or overexpression of RUNX2, while RUNX2 overexpression eliminated the suppressive efficaciousness of miR-188-5p mimics on HKF cells growth. GNAS-AS1 knockdown could regulate the miR-188-5p/RUNX2 signaling axis to inhibit the growth and migration in keloid cells. It is suggested that GNAS-AS1 may become a new target for the prevention and treatment of keloid.


Assuntos
Queloide , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Queloide/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Cromograninas/genética , Cromograninas/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo
17.
Nature ; 611(7934): 173-179, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36289326

RESUMO

G-protein-coupled receptors (GPCRs), the largest family of signalling receptors, as well as important drug targets, are known to activate extracellular-signal-regulated kinase (ERK)-a master regulator of cell proliferation and survival1. However, the precise mechanisms that underlie GPCR-mediated ERK activation are not clearly understood2-4. Here we investigated how spatially organized ß2-adrenergic receptor (ß2AR) signalling controls ERK. Using subcellularly targeted ERK activity biosensors5, we show that ß2AR signalling induces ERK activity at endosomes, but not at the plasma membrane. This pool of ERK activity depends on active, endosome-localized Gαs and requires ligand-stimulated ß2AR endocytosis. We further identify an endosomally localized non-canonical signalling axis comprising Gαs, RAF and mitogen-activated protein kinase kinase, resulting in endosomal ERK activity that propagates into the nucleus. Selective inhibition of endosomal ß2AR and Gαs signalling blunted nuclear ERK activity, MYC gene expression and cell proliferation. These results reveal a non-canonical mechanism for the spatial regulation of ERK through GPCR signalling and identify a functionally important endosomal signalling axis.


Assuntos
Adrenérgicos , Endossomos , MAP Quinases Reguladas por Sinal Extracelular , Receptores Adrenérgicos beta 2 , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Proliferação de Células , Endossomos/efeitos dos fármacos , Endossomos/enzimologia , Endossomos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genes myc , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
18.
Mol Cell ; 82(18): 3468-3483.e5, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932760

RESUMO

Endogenous parathyroid hormone (PTH) and PTH-related peptide (PTHrP) bind to the parathyroid hormone receptor 1 (PTH1R) and activate the stimulatory G-protein (Gs) signaling pathway. Intriguingly, the two ligands have distinct signaling and physiological properties: PTH evokes prolonged Gs activation, whereas PTHrP evokes transient Gs activation with reduced bone-resorption effects. The distinct molecular actions are ascribed to the differences in ligand recognition and dissociation kinetics. Here, we report cryoelectron microscopic structures of six forms of the human PTH1R-Gs complex in the presence of PTH or PTHrP at resolutions of 2.8 -4.1 Å. A comparison of the PTH-bound and PTHrP-bound structures reveals distinct ligand-receptor interactions underlying the ligand affinity and selectivity. Furthermore, five distinct PTH-bound structures, combined with computational analyses, provide insights into the unique and complex process of ligand dissociation from the receptor and shed light on the distinct durations of signaling induced by PTH and PTHrP.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo , Receptor Tipo 1 de Hormônio Paratireóideo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Hormônio Paratireóideo/química , Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/farmacologia , Proteína Relacionada ao Hormônio Paratireóideo/química , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo
19.
J Bone Miner Res ; 37(10): 1850-1859, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35859320

RESUMO

Loss of methylation (LOM) at GNAS-A/B:TSS-differentially methylated regions (DMRs) in the GNAS locus is observed in pseudohypoparathyroidism type 1B (PHP1B). Many PHP1B cases are sporadic, but autosomal dominant-PHP1B has a deletion involving NESP55 expressed from the maternal allele or STX16 located upstream of the GNAS locus on the maternal allele. We report the possible first familial PHP1B cases with retrotransposon insertion in the GNAS locus on the maternal allele. To our knowledge, they are the possible first cases with imprinting disorders caused by retrotransposon insertion. The two sibling cases experienced tetany and/or cramps from school age and had hypocalcemia and an increased serum intact parathyroid hormone (PTH) level together with overweight, round face, and normal intellectual levels. Methylation analysis for DMRs in the GNAS locus showed only LOM of the GNAS-A/B:TSS-DMR. Copy number abnormalities at STX16 and the GNAS locus were not detected by array comparative genomic hybridization. Whole-genome sequencing and Sanger sequencing revealed an approximately 1000-bp SVA retrotransposon insertion upstream of the first exon of A/B on the GNAS locus in these siblings. Whole-genome methylome analysis by Enzymatic Methyl-Seq in the siblings showed normal methylation status in the region surrounding the insertion site and mild LOM of the GNAS-A/B:TSS-DMR. We conducted transcriptome analysis using mRNA from skin fibroblasts and induced pluripotent stem cells (iPSCs) derived from the siblings and detected no aberrant NESP55 transcripts. Quantitative reverse-transcriptase PCR (qRT-PCR) analysis in skin fibroblasts showed increased A/B expression in the patients and no NESP55 expression, even in a control. qRT-PCR analysis in iPSCs showed decreased NESP55 expression with normal methylation status of the GNAS-NESP:TSS-DMR in the patients. The retrotransposon insertion in the siblings likely caused decreased NESP55 expression that could lead to increased A/B expression via LOM of the GNAS-A/B:TSS-DMR, subsequent reduced Gsα expression, and finally, PHP1B development. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Pseudo-Hipoparatireoidismo , Retroelementos , Humanos , Cromograninas/genética , Cromograninas/metabolismo , Hibridização Genômica Comparativa , Pseudo-Hipoparatireoidismo/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , RNA Mensageiro/metabolismo , Hormônio Paratireóideo/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Metilação de DNA/genética , Pseudo-Hipoparatireoidismo
20.
Cell Signal ; 97: 110396, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35787445

RESUMO

Nine mammalian adenylyl cyclases (AC) are pseudoheterodimers with two hexahelical membrane domains, which are isoform-specifically conserved. Previously we proposed that these membrane domains are orphan receptors (https://doi.org/10.7554/eLife.13098; https://doi.org/10.1016/j.cellsig.2020.109538). Lipids extracted from fetal bovine serum at pH 1 inhibited several mAC activities. Guided by a lipidomic analysis we tested glycerophospholipids as potential ligands. Contrary to expectations we surprisingly discovered that 1-stearoyl-2-docosahexaenoyl-phosphatidic acid (SDPA) potentiated Gsα-activated activity of human AC isoform 3 seven-fold. The specificity of fatty acyl esters at glycerol positions 1 and 2 was rather stringent. 1-Stearoyl-2-docosahexaenoyl-phosphatidylserine and 1-stearoyl-2-docosahexaenoyl-phosphatidylethanolamine significantly potentiated several Gsα-activated mAC isoforms to different extents. SDPA appears not interact with forskolin activation of AC isoform 3. SDPA enhanced Gsα-activated AC activities in membranes from mouse brain cortex. The action of SDPA was reversible. Unexpectedly, SDPA did not affect cAMP generation in HEK293 cells stimulated by isoproterenol, PGE2 and adenosine, virtually excluding a role as an extracellular ligand and, instead, suggesting an intracellular role. In summary, we discovered a new dimension of intracellular AC regulation by chemically defined glycerophospholipids.


Assuntos
Adenilil Ciclases , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Adenilil Ciclases/metabolismo , Animais , Colforsina/farmacologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Glicerofosfolipídeos , Células HEK293 , Humanos , Mamíferos/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...